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Nonthermal radiation observed from astrophysical systemscontaining relativistic jets and shocks,

e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems

usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion

(electron-positron) jets injected into a stationary medium show that particle acceleration occurs

within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman

instability, other two-streaming instability, and the Weibel (filamentation) instability create colli-

sionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The

simulation results show that the Weibel instability is responsible for generating and amplifying

highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron’s

transverse deflection behind the jet head. The “jitter” radiation from deflected electrons in small-

scale magnetic fields has different properties than synchrotron radiation which is calculated in a

uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be im-

portant to understand the complex time evolution and/or spectral structure in gamma-ray bursts,

relativistic jets, and supernova remnants.
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1. Introduction

Shocks are believed to be responsible for prompt emission from gamma-ray bursts (GRBs)
and their afterglows, for variable emission from blazars, and for particle acceleration processes in
jets from active galactic nuclei (AGN) and supernova remnants (SNRs). The predominant contri-
bution to the observed emission spectra is often assumed to be synchrotron- and inverse Compton
radiation from these accelerated particles for gamma-ray bursts [1-7] and for AGN jets [8-13]. It
is assumed that turbulent magnetic fields in the shock regionlead to Fermi acceleration, producing
higher energy particles [14, 15]. To make progress in understanding emission from these object
classes, it is essential to place modeling efforts on a firm physical basis. This requires studies of
the microphysics of the shock process in a self-consistent manner [16, 17].

2. Method of calculation

Three-dimensional relativistic particle-in-cell (RPIC)simulations have been used to study the
microphysical processes in relativistic shocks. Such PIC simulations show that rapid acceleration
takes place in situ in the downstream jet [18-33]. Three independent simulation studies confirm
that relativistic counter-streaming jets do excite the Weibel instability [34], which generates current
filaments and associated magnetic fields [35], and accelerates electrons [18-22].

In order to determine the luminosity and spectral energy density (SED) of synchrotron radi-
ation, it is general practise to simply assume that a certainfraction εB of the post-shock thermal
energy density is carried by the magnetic field, that a fraction εe is carried by electrons, and that
the energy distribution of the electrons is a power-law,d logne/d logε = p (above some minimum
energyEm which is determined byεe,εB and p). In this approach,εB, εe, and p are treated as
free parameters, to be determined by observations. However, more constraining data now require
additional free parameters such as the introduction of broken power-law to reproduce the spectral
energy distributions of TeV blazars for instance [11]. Due to the lack of a first principle theory
of collisionless shocks, a purely phenomenological approach to modeling radiation is applied, but
one must recognize that emission is then calculated withouta full understanding of the processes
responsible for particle acceleration and magnetic field generation [17]. It is important to clar-
ify that the constraints imposed on these parameters by the observations are independent of any
assumptions regarding the nature of the shocks and the processes responsible for particle accelera-
tion or magnetic field generation. Any model proposed for theactual shock micro-physics must be
consistent with these phenomenological constraints.

Since magnetic fields are generated by the current structures produced in the filamentation
(Weibel) instability, it is possible that “jitter” radiation [36-44] is an important emission process in
GRB and AGN jets. It should be noted that synchrotron- and ‘jitter’-radiation are fundamentally
the same physical processes (emission of accelerated charges in a magnetic field), but the relative
importance of the two regimes depends on the comparison of the deflection angle and the emission
angle of the charges [36]. Emission via synchrotron- or “jitter"-radiation from relativistic shocks
is determined by the magnetic field strength and structure and the electron energy distribution
behind the shock, which can be computed self-consistently with RPIC simulations. The full RPIC
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simulations may actually help to determine whether the emission is more synchrotron-like or jitter-
like.

The characteristic differences between Synchrotron- and jitter radiation are relevant for a
more fundamental understanding of the complex time evolution and/or spectral propertis of GRBs
(prompt and afterglows) [45]. For example, jitter radiation has been proposed as a solution of
the puzzle that below their peak frequency GRB spectra are sometimes steeper than the “line of
death” spectral index associated with synchrotron emission [35-38], i.e., the observed SED scales
as Fν ∝ ν2/3, whereas synchrotron SEDs should followFν ∝ ν1/3, or even more shallow (i.e.
Fν ∝ να whereα ≤ 1/3, e.g., [37]). Thus, it is crucial to calculate the emergingradiation by trac-
ing electrons (positrons) in self-consistently evolved electromagnetic fields. This highly complex
analytical and computational task requires sophisticatedtools, such as multi-dimensional, relativis-
tic, PIC methods.

2.1 New Computing Method of Calculating Synchrotron and Jitter Emission from Electron
Trajectories in Self-consistently Generated Magnetic Fields

Consider a particle at positionr0(t) at time t (Fig. 1). At the same time, we observe the
associated electric field from positionr. Because of the finite propagation velocity of light, we
actually observe the particle at an earlier positionr0(t

′
) along its trajectory, labeled with the retarded

time t
′
= t − δ t

′
= t −R(t

′
)/c. HereR(t

′
) = |r− r0(t

′
)| is the distance from the charge (at the

retarded timet
′
) to the observer’s position.

Figure 1: Definition of the retardation effect. From
an observers point, r, one sees the particle at position
r0(t

′
) where it was at retarded time t’ (from Figure 2.2

in [46]).

The retarded electric field from a charged particle moving with instantaneous velocityβ under
accelerationβ̇ is expressed as [48],

E =
q

4πε0

[

n−β
γ2(1−n ·β)3R2

]

ret
+

q
4πε0c

[

n×{(n−β)× β̇}
(1−n ·β)3R

]

ret

(2.1)

Here,n ≡ R(t
′
)/|R(t

′
)| is a unit vector that points from the particle’s retarded position towards

the observer. The first term on the right hand side, containing the velocity field, is the Coulomb
field from a charge moving without influence from external forces. The second term is a correction
term that arises when the charge is subject to acceleration.Since the velocity-dependent field falls
off in distance asR−2, while the acceleration-dependent field scales asR−1, the latter becomes
dominant when observing the charge at large distances (R≫ 1).

The choice of unit vectorn along the direction of propagation of the jet (hereafter taken to
be theZ-axis) corresponds to head-on emission. For any other choice of n (e.g.,θ . 1/γ), off-
axis emission is seen by the observer. The observer’s viewing angle is set by the choice ofn
(n2

x +n2
y +n2

z = 1). After some calculation and simplifying assumptions (for detailed derivation see
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[46]) the total energyW radiated per unit solid angle per unit frequency can be expressed as

d2W
dΩdω

=
µ0cq2

16π3

∣

∣

∣

∣

∣

∫ ∞

−∞

n× [(n−β)× β̇ ]

(1−β ·n)2 eiω(t
′
−n·r0(t

′
)/c)dt

′

∣

∣

∣

∣

∣

2

(2.2)

This equation contains the retarded electric field from a charged particle moving with instantaneous
velocity β under acceleratioṅβ , and only the acceleration field is kept since the velocity field
decreases rapidly as 1/R2. The distribution over frequencies of the emitted radiation depends on
the particle energy, radius of curvature, and acceleration. These quantities are readily obtained
from the trajectory of each charged particle.

Since the jet plasma has a large velocityZ-component in the simulation frame, the radiation
from the particles (electrons and positrons) is heavily beamed along theZ-axis as jitter radiation
[36, 37, 38, 44].

3. Radiation from relativistic electrons: a simple case to test computing method

Here we have calculated the radiation from two electrons with Lorentz factor (γ = 15.8,40.8)
[29, 30]. The electrons gyrate in thex−zplane with the uniform magnetic field (By) and the results
are shown in Figures 2 & 3.
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Figure 2: The paths of two charged particles moving in a fixed homogenous magnetic field (left panel)
(γ = 15.8,40.8). The particles produce a time dependent electric field. Anobserver situated at great distance
along the n-vector sees the retarded electric field from the gyrating particles (right panel). As a result
of relativistic beaming, the field is seen as pulses peaking when the particles move directly towards the
observer.
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Figure 3: The observed power spectrum from two
charged particles, gyrating in a magnetic field at dif-
ferent viewing angles. The viewing angles are 0◦, 1◦,
2◦, 3◦, 4◦, 5◦, and 6◦ (ny 6= 0). With larger angles
the frequencies above the Nyquist frequency should be
strongly damped, however they increase due to aliasing
[46]. The units on both axes are arbitrary. The theo-
retical synchrotron spectrum for a viewing angle equal
to 0◦ is plotted for comparison as a red curve for the
electron withγ = 40.8 (multiplied by 2 for clarity).

The spectra observed far from the electron at angles with respect to thez direction are shown
in Fig. 3. The higher frequencies (> fc) are strongly damped with increasing angles ase(− f/ fc),
see [48]. Since the critical frequencyfc = 3

2γ3
(

c
ρ

)

= 2309, whereρ = 11.03 for the electron
with γ = 40.8 is larger than that forγ = 15.8, the radiation from the electronγ = 40.8 is dominant
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[30]. The electron withγ = 15.8 gyrates about three times in this period, the ripples in thespectrum
shows the electron cyclotron frequency. However, in order to resolve it much longer time is required
[46]. We have very good agreement between the spectrum obtained from the simulation and the
theoretical synchrotron spectrum expectation (red curve)from eq. 3 (eq. 7.10 [46]).

Synchrotron radiation with the full angular dependency forthe parallel polarization component
is given by [48],

d2W||

dωdΩ
=

µ0cq2ω2

12π

(

rLθ2
β β 2

c

)2
|K 2

3
(χ/
√

cosθβ 3)|2

(cosθβ 3)2 , (3.1)

whereθ is the angle betweenn and the orbital planeθ2
β ≡ 2(1−β cosθ), χ = ωrLθ3

β /3c andrL

the gyro-radiusγmv/(qB). For β → 1 andθ → 0 this expression converges toward the solution
one normally finds in text books [48, 47].

It should be noted that the method based on the integration ofthe retarded electric fields
calculated by tracing many electrons described in this section can provide a proper spectrum in
turbulent electromagnetic fields. On the other hand, if the formula for the frequency spectrum of
radiation emitted by a relativistic charged particle in instantaneous circular motion is used [47, 48],
the complex particle accelerations and trajectories are not properly accounted for and the jitter
radiation spectrum is not properly obtained (for details see [46, 49]). The results described above
validate the technique used in our code as described previous section [29, 30, 46, 49].

4. Discussion

We have started to calculate emission directly from our simulations using the same method
described in the previous section. In order to calculate the(jitter-like) synchrotron radiation from
the particles in the electromagnetic fields generated by thefilamentation instability, the retarded
electric field from a single particle is Fourier-transformed to give the individual particle spectrum
as described in the previous section. The individual particle spectra are added together to produce
a total spectrum over a particular simulation time span [46,49]. It should be noted that for this
calculation very large simulations over a long time (ts) are required using a small time step (∆t)
in order to increase the upper frequency limit to the spectrum (Nyquist frequencyωN = 1/2∆t).
Frequency resolution is limited by the time span (∆ω = 1/ts) [46, 49]. For a case with the time
step∆t = 0.01/ωpe and the time spants = 50/ωpe, a calculated spectrum will have the highest
frequency, 50ωpe and the frequency resolution (the lowest frequency), 0.02ωpe. ωpe is calculated
with an appropriate plasma density. Simulations over a longtime allow us to obtain multiple
spectra at sequential time spans so the spectral evolution can be calculated. Synthetic spectra
obtained in the way we have described above should be compared with GRB prompt and afterglow
observations.

In the case of AGN jets, diffusive synchrotron radiation hasalready been invoked by several
works [39, 41, 43] to reproduce spectra of 3C273, M87 and Cen Aknots from radio to X-rays. For
TeV blazars, taking into account the relative importance ofthe energy densities contained in the
small-scale and large-scale magnetic fields may be an elegant alternative to the choice of a broken
power-law for the energy distribution of radiating electrons.
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